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Abstract

TheBayesiarf'evidence”approximationwhichis closelyrelatedto general-
izedmaximumlikelihood, hasrecentlybeenemployedo determinghenoise
andweight-penaltytermsfor training neuralnets.This papershowsthatit is

far simplerto performthe exactcalculationthanit is to setup the evidence
approximation.Moreover,unlike that approximation the exactresultdoes
not haveto be re-calculatedor everynew dataset.Nor doesit requirethe

running of complex numericalcomputercode (the exactresultis closed
form). In addition,it turnsout thatfor neuralnets,the evidenceprocedure’s
MAP estimatds in toto approximatiorerror. Anotheradvantag®f theexact
analysisis thatit doesnot leadto incorrectintuition, like the claim thatone
can“evaluatedifferentpriorsin light of thedata”. This paperendsby discuss-
ing sufficiencyconditionsfor theevidenceapproximatiorto hold, alongwith

the implicationsof thoseconditions.Although couchedin termsof neural
nets,theanalysisof this paperholdsfor any Bayesiarinterpolationproblem.

1 THE EVIDENCE APPROXIMATION

It hasrecentlybecomepopularto considerthe problemof training neuralnetsfrom a
Bayesiarviewpoint(BuntineandWeigend1991,MacKay 1992).The usualway of doing

this startsby assuminghatthereis someunderlyingtargetfunctionf from R" to R, pa-
rameterizedy an N-dimensionalveightvectorw. We areprovidedwith atrainingsetL
of noise-corruptedamplesf f. Ourgoalis to makea guesdor w, basingthatguessonly
on L. Now assumewe havei.i.d. additive gaussiamoise resultingin P(L | w, ) O

exp(f x2(w, L)), wherex?(w, L) is theusualsum-squarettainingseterror,andf reflects
thenoiselevel. AssumefurtherthatP(w | a) O expEaW(w)), whereW(w) is the sumof
the square®of theweights.If thevaluesof a and areknownandfixed, to the valuesa,

andp; respectivelythenPWw) = P(w | a;) andP(L |w) = P(L | w, ;). Bayes’'theorenthen
saysthat the posterior is proportionalto the likelihood timesthe prior, i.e., Piw | L) O
P(L | w) x P(w). Consequentlyfinding the w minimizing xz(w, L) + (o¢/ BYW(w) is
equivalentto finding the maximum a posteriori (MAP) w - the w which maximizes
P@ | L). This can be viewed as a justification for gradient descent with weight-decay.

Oneof thedifficulties with the foregoingis thatwe almostneverknow a; andf; in real-
world problemsOneway to dealwith thisis to estimaten; andf;, for examplevia atech-



niquelike cross-validationln contrasta Bayesiarapproactto this problemwould beto
set priors ovea andp, and then examine the consequences for the postemor of

This Bayesiampproachs the startingpoint for the “evidence”approximatiorcreatecby
Gull (Gull 1989).Onemakesthreeassumptionsfor P(w | y), P(L | w, y), andP(y). (For
simplicity of the exposition from now on thetwo quantitiesa andp will beexpresseas
the two components of the single veqidrThe quantity of interest is the posterior:

R(|L)=[dyPw,y|L)
Fay[{P(w,y| L)/ P L)} x Pl | L)] )

Theevidenceapproximatiorsuggestshatif Py | L) is sharplypeakedabouty =y, while
thetermin curly bracketss smoothabouty = vy, thenonecanapproximatehe w-depen-
denceof P(w | L) asP(w, y |L) /P |L) = Pw]|y,L) OP(L|w,Y)PW]Y).In other
words,with the evidenceapproximationpnesetsthe posteriorby takingPWw) = P(w | )
andP(L |w) = P(L|w,Y), wherey is the MAP y. This procedurds a closerelative of
non-Bayesian statistics’ generalized maximum likelihood (Davies and Anderssen 1986).

P(L|y)=fdw[P(L |w,Yy) P |Y)]isknownasthe“evidence"for L giveny. Forrelatively
smoothP(y), the peakof P(y | L) is the sameasthe peakof the evidencghencethe name
“evidenceapproximation”).MacKay hasappliedthe evidenceapproximatiorto finding
theposteriorfor theneuralnetP{w | a) andP(L | w, 8) recountechbovecombinedwith a
P(y) = P(a, B) whichis uniformoverall a andf from 0 to +o (MacKay1992).In addition
to the errorintroducedby the evidenceapproximationadditionalerroris introducedby
his needto numericallyapproximatey'. MacKay statesthat althoughhe expectshis ap-
proximationfor y' to be valid, “it is a matterof furtherresearcho establishconditions
for] this approximation to be reliable”.

In this papemo usewill be madeof thefactthatw is a neuralnetparameterthe analysis
goesthroughregardles®f the precisemappingfrom w to f. In addition,althoughthis pa-
perwill only explicitly considerusingevidenceo sethyperparameteige a andf3, most
of whatwill be saidalsoappliesto the useof evidenceto setothercharacteristicef the
learner,like its architecture Section2 of this paperpresentshe exactcalculationfor

MacKay's scenariocomparest with the evidenceapproximationanddiscusseshe ap-
parentability of theevidenceapproximatiorto give reasonableesults.Section3 discuss-
esthefallaciousview thatwith the evidenceapproximatioronecansetpriorsin an“ob-

jectivemanner’by usingthedata.A proofis presentedhatfor non-pathologicaP(y), the

prior given by the evidenceapproximationcan neverbe correct(this resultcastssome
doubtontheself-consistencyf thevarious“first principles”argumentsvhich havebeen
offeredin favor of particularpriors, e.g.,suchargumentsn favor of the entropicprior).

Finally, section4 discussesufficiency conditionsfor the evidenceapproximationto be

valid. It alsoshowshow to usesomeof thoseconditionsboth to testthe validity of the

evidence approximation and to aid calculations under that approximation.

2 THE EXACT CALCULATION

It is always true that thexact posterior is given by

PWw) = [dyPw |y) P),

P(L |w) = fdy{P(L |w,y)x P |y)xP{)} /PWw);

PWw[L) O Jdy{P(L |w,y) xPW|y) x P(y)} 2)
where the proportionality constant, being independent, @ irrelevant.

Using the neuralnet P(w | a) and P(L | w, B) given above,and MacKay’s P(y), it is
straight-forwardo useequatior? to calculatethatPw) O [W(w)]" N2+ 1) whereN is the
numberof weights.Similarly, with m the numberof pairsin L, P(L | w) O [x3(w, L)]" ™

2+1) (See(Wolpert1992)and(BuntineandWeigend1991),andallow the outputvalues
in L to rangefrom - to +00.) Thesetwo resultsgive usthe exactlycorrectposterior P (w

L) O WwW)] N2+ D x [x%(w, L)] ™2+ 1) |n contrastthe evidence-approximateubs-
terior 0 exp[-a'(L) W(w) - B'(L) X3(w, L)].



It isilluminating to compareheexactcalculationto the calculationbasedntheevidence
approximationA lot of relativelycomplicatednathematic$ollowed by somecomputer-
basechumericalestimationis necessaryo arriveattheevidenceapproximation’sanswer.
(This is dueto the needto approximatey'.) In contrastto performthe exactcalculation
oneonly needevaluatea simplegaussiarnntegral,which canbedonein closedform, and

in particularonedoesn’ineedto performanycomputer-basedumericalestimationln ad-

dition, with the evidenceprocedurey mustbe re-evaluatedor eachnew dataset,which

meanghattheformulagiving the posteriormmustbere-derivedeverytime oneusesanew
dataset.In contrastthe exactcalculation’sformulafor the posteriorholdsfor any data
set;nore-calculationarerequired.Soasa practicaltool for finding the posterior the ex-

actcalculationis bothfar simplerandquickerto usethanthe calculationbasecn the ev-

idence approximation.

Anotheradvantagef the exactcalculation,of coursejs thatit is exact. Indeed,consider
the simplecasewherethenoiseis fixed, i.e., P(y) = P(y;) &(Y> - Bt), sothattheonly term

we needto “dealwith” is y; = a. Setall otherdistributionsasin (MacKay 1992).For this

case thew-dependencef the exactposteriorcanbe quite differentfrom that of the evi-

dence-approximategosterior.In particular,the MAP estimatebasedon the exactcalcu-
lationis w = 0. Thisis, of courseasilly answerandreflectsthe poorchoiceof distribu-

tions madein (MacKay 1992).In particular,it reflectsthe un-normalizabilityof MacK-

ay’'s P(a). Howevertheimportantpointis thatthisis the exactly correct answeffor those
distributions Ontheotherhand theevidenceprocedurewill resultin anMAP estimateof

argmin, [x2(w, L) + (o' / BYW(w)], wherea' andp' arederivedfrom L. Oftenthis answer
is far from w = 0. Note alsothatthe evidenceapproximations’answewill vary, perhaps
greatly,with L, whereaghecorrectanswels L-independentinally, sincethecorrectan-

sweris w = 0, thedifferencebetweertheevidenceprocedure’sasnswerandthe correctan-

sweris equalto theevidenceprocedure’sanswerln otherwords,althoughthereexistsce-
nariosfor which theevidenceapproximatioris valid, neuralnetswith flat P(y,) is notone

of them:;for this scenariotheevidenceprocedure’sansweiis in toto approximatiorerror,

no matterhow peakedP(y | L) is. (A possiblereasorfor thisis presentedh sectiond.) So

neuralnetswith flat P(y;) servesasan existenceproof thattherearescenariosn which

the evidence procedure fails.

If oneuseda morereasonabl®(a), uniformonly from O up to a cut-off a,,,,, theresults
wouldbeessentiallthesamefor largeenoughn 5 TOfirst order theeffectontheexact
posterioris to introducea smallregionaroundw = 0 in which P(w) behavedike adecay-
ing exponentialn W(w) (theexponenbeingsetby a,,,,) ratherthanlike [W(w)]" (2 +1)
(T. Wallstrom, private communication).For large enougha,,, the regionis small
enoughsothatthe exactposteriorstill hasa peakvery closeto 0. On the otherhand,for
largeenougha 5y thereis no changein the evidenceprocedure’sanswer (Generically,
themajoreffectontheevidencerocedureof modifying P(y) is notto changets guesdor
P(w | L), butratherto changeheassociateerror,i.e.,changevhethersufficiencycondi-
tionsfor thevalidity of theapproximatioraremet. Seebelow.) Evenwith anormalizable
prior, the evidence procedure’s answer is still essentially all approximation error.

Consideragain the casewherethe prior over botha andf is uniform. With the evidence
approximationthelog of the posterioris -{ x3(w, L) + (o' / B)W(w) }, wherea' andp'
aresetby thedata.On the otherhand,the exactcalculationshawvs thatthe log of the pos-
terior is really given by -{ In[xz(w, L)] + (N+2/ m+2)In[W(w)] }. What's interesting
aboutthisis notsimply thelogarithms,absenfrom the evidenceapproximations answey
but alsothe factormultiplying theterminvolving the “weight penalty” quantityW(w). In
theevidenceapproximationthisfactoris data-dependenivhereasn theexactcalculation
it only depend®n the numberof data.Moreover, the valueof this factorin the exactcal-
culationtells us thatif the numberof weightsincreasesor alternatvely the numberof
trainingexamplesdecreaseghe “weight penalty”termbecomesnoreimportant,andfit-
ting thetrainingexamplesbecomedessimportant.(It is notatall clearthatthis trade-of
betweerN andm is reflectedin (a' / '), the correspondindactorfrom the evidenceap-



proximation.)As before,if we have uppercut-offs onP(y), sothatthe MAP estimatanay
bereasonablethingsdon't changemuch.For sucha scenariotheN vs. m trade-of gov-

erningthe relative importanceof W(w) andx?(w, L) still holds,but only to lowestorder
andonly in theregion sufiiciently far from theinfinite-cutof-singularities(like w = 0) so

that P | L) behaes like [W(w)] ™2 * D x [x3(w, L)] (™2 +1)

All of this notwithstandingthe evidenceapproximationhasbeenreportedto give good
resultsin practice.This shouldnot be very surprising.Therearemanyproceduresvhich
areformally illegal butwhich still givereasonabladvice.Indeed somemightclassifyall
of non-Bayesiarstatisticsthatway. The evidenceprocedurdixesy to a singlevalue,es-
sentially by maximumlikelihood. That's not unreasonablgust usually illegal, from a
Bayesiarperspectivéaswell asfar morelaboriousthanthe correctBayesiarprocedure).
Indeed giventhepoorchoiceof distributionsin (MacKay1992),onemightarguethatus-
ing anapproximationwhich inducesa largeerroris quite sensiblesincedoingsoallows
oneto avoidthe silly answergddemandedby thosepoordistributionsunderthe exactcal-
culation.Of courseabetterapproachs to choosesensibldistributionsin thefirst place.

In anycaseglosescrutinyof thetestsof theevidenceapproximatiorreportedn (MacKay
1992)revealsthoseteststo be lessthanfully convincing.For paperl, the evidenceap-

proximationgivesa' = 2.5.Foranyothera in anintervalextendingthree orders of mag-

nitude aboutthis a', testset error is essentiallyunchangedseefigure 5 of (MacKay
1992)).Sincesucherroris whatwe're ultimatelyinterestedn, thisis hardlyadifficult test
of theevidenceapproximationin paper2 of (MacKay1992)theinitial useof theevidence
approximatioris “a failure of Bayesiarprediction”;P(y | L) doesn’tcorrelatewith testset
error (seefigure 7 of that paper).MacKay addressethis by arguingthatpoor Bayesian
resultsareneverwrong,butonly “an opportunityto learn” (in contrasto poornon-Baye-
sianresults?)Accordingly,hemodifiesthe systermwhile looking at the test set, to gethis

desiredcorrelationon thetestset.To do this legally, he shouldhaveinsteadmodified his

systemwhile lookingatavalidationset,separatérom thetestset.Howeverif hehaddone
that, it would haveraisedthe questionof why oneshoulduseevidenceatall; sinceoneis

alreadyassuminghatbehavioron a validationsetcorresponds$o behavioron a testset,
why not just seti andf3 via cross-validation?

3 EVIDENCE AND THE PRIOR

Considerthe evidenceapproximatiorfor the prior, Pw) = P(w | y). Sincey dependn
thedatal, it would appeathatwhenthe evidenceapproximatioris valid, the datadeter-
minestheprior, or asMacKay putsit, “the modernBayesian.. doesnot assignthe priors
- manydifferentpriorscanbe... comparedn thelight of the databy evaluatingthe evi-
dence’(MacKay1992).If thisweretrue,it would removeperhapshe mostmajorobjec-
tion which hasbeenraisedconcerningBayesiamanalysis- the needto choosepriorsin a
subjectivemannerjndependenof the data.Howeverthe exactP(w) givenby equation?
is data-independenBoonehas chosertheprior, in a subjectiveway, independenof the
data.The evidenceprocedures simply providing a data-dependerapproximationto a
data-independemjuantity.ln nosensaloestheevidenceprocedureallow oneto side-step
the need to make subjective assumptions which fi.P(

Sincethetrue P(w) doesn’tvary with L whereagheevidenceapproximation’s?(w) does,
onemight suspecthatthatapproximatiorto P(w) canbe quite poor,evenwhenthe evi-
denceapproximatiorto the posterioris good.Indeed,if P(w | y;) is exponentialthereis

no non-pathological scenario for which the evidence approximatiomtpi®¢orrect:

Theorem 1: Assume that Pw | y;) O €Y1 Y™) for somefunctionU(.). Then the only way
that one can have P(w) 0 e Y(™) for some constant o isif P(y;) = Ofor all y; # a.

Proof: Ourproposecdequalityis exp(-a x U) = [dy;{P(y1) x exp(y;, x U)} (thenormaliza-
tion factorshavingall beenabsorbednto P(y;)). We mustfind ana anda normalizable
P(y,) suchthatthis equalityholdsfor all allowedU. Let u besuchanallowedvalueof U.



Takethe derivativewith respecto U of both sidesof the proposedequalityt times,and
evaluatefor U = u. Theresultis a' = [dy;((yy)' x R(y)) for anyintegert = 0, whereR(y;)

= P(y1) exp(u@ - yq))- Usingthis, we seethatdy;((y; - 0()2 x R(y)) = 0. SincebothR(y;)

and(y; - a)? arenowherenegative this meanghatfor all y; for which (y; - a)?# 0, R(y;)
must equal zero. Thereforeyg must equal zero for ayh # a. QED.

Notethatif thelikelihood is nowhere-zerotheoreml meanghatthereexistsa non-zero
lower boundon the error of usingthe evidenceprocedureo setthe posterior.Sowe are
assuredhattherewill alwaysbe some errorwith usingthe evidenceprocedure theonly

guestion is how much.

Sincethe evidenceapproximationfor the prior is wrong, how canits approximationfor
the posterioreverbe good?To answetthis, write P(w | L) = P(L | w) x [P'(w) + E(w)] /
P(L), whereP'(w) is theevidenceapproximatiorto P(w). (It is assumedhatwe knowthe
likelihood exactly.)This meanghatP(w | L) - {P(L |w) x P'(w) / P(L)}, theerrorin the
evidenceprocedure’estimateor the posterior,equalsP(L | w) x E(w) / P(L). Sowe can
havearbitrarily largeE(w) andnotintroducesizableerrorinto the posteriorof w, butonly
for thosew for which P(L | w) is small.As L varies,thew with non-negligibldikelihood
vary,andthey suchthatfor thosew P(w | y) is agoodapproximatiorto P(w) varies.When
it works, they' given by the evidence approximation reflects this changirygnith L.

As an aside,notethattheoreml suggestghat no “first principles”argumentor a prior

P(w) canbeself-consistenif it saysthattheprior is proportionato exp(-aU(w)) for some
U(.) butdoesnotfix a. Sincewith suchanargumente do notknowwhata is, we have
ignoranceconcerningt, andthatignorancemustbereflectedin anon-deltafunctionP(a).

In turn, by theoreml, sucha distributionensureghat P(w) is not proportionalto exp(-
a'U(w)) for somea’'. In particular thefirst principlesargumentsvhich havebeenoffered
in favor of theso-called‘entropicprior” butwhich donotfix a (e.g.,(Skilling 1989))suf-
fer from this problem.

4 SUFFICIENCY CONDITIONSFOR EVIDENCE TO WORK

Note thatregardles®f how peakedthe evidencels, -{ xz(w, L) + (@' /BYW(Ww)} #

-{ In[xz(w, L)] + (N+2/ m+2)In[W(w)] }; theevidenceapproximatioralwayshasnon-
negligibleerrorfor neuralnetsusedwith flat P(y). To understandhis, onemustcarefully
elucidatea setof sufficiencyconditionsnecessaryor the evidenceapproximationto be
valid. (Unfortunately thishasneverbeendonebefore A directconsequencis thatnoone
has ever formally justified a particular use of the evidence approximation.)

Onesuchsetof sufficiencyconditionstheoneimplicit in all attemptdo dateto justify the
evidenceapproximatior(i.e.,theoneimplicit in thelogic of equationl), canbeintuitively
phrased as follows:

P(y| L) is sharply peaked about a particylay. 0]
P, y| L)/ P | L) varies slowly aroung=y. (i)
P(w, y| L) is infinitesimal for ally sufficiently far fromy'. (i)

Define“evidenceworks” to meanthatthereexistsa positiveconstanty anda smallposi-
tive constaniA suchthatA = |P(w |L) - ¢PW |y, L) |for allw. Letcondition(i) mean
that there existsa small positive constantA and a small positive constantd suchthat
Pl |L) / P |L) <A for bothy; =y - dandy; =y + 0. Let condition(ii) meanthat
acrosqy -9,y +9], |Pw ]y, L)-PWw]y,L) |<rt, for somesmallpositiveconstantr,
for all w. Let condition (iii) meanthatthereexistsa positivek suchthatthe difference

|[Pw]|L) - kjy_\gé dy P(w, y|L) | is boundedoy asmallconstant for all w. Hereand
throughouthis paperwhenyis multi-dimensionalsois d. (In suchcasegphrasedike “for
bothy; =y - d and/ + d" (which occursin the definition of condition (i)) referto the
pointsonthesurfaceof ahypercubeatherthan(asin the one-dimensionatasepresented
above)to the pair of points making up the surfaceof a one-dimensionatube). It will



sometimesbe useful to considera quantity closely relatedto (i), namelythe integral
5
jy_\g dy P{y | L); this quantity is defined to equal p--

It is only with k = 1 thatthe formal definition of condition(iii) impliesthe original intu-
itivee definitioninvolving “infinitesimal” P(w, y | L). In otherwords,thegivenformaldef-
inition of condition(iii) is aslightextensiorof the originalinformal definition. In thisre-
gard,note that whenthe evidenceapproximationholds condition (ii) implies condition
(i), but with a k different from 1. (This is proven in the appendix.)

Theorem 2: When conditions (i), (ii), and (iii) hold, evidence works, with ¢ =k(1 - p) and
A=¢g+T1k(1 -p).

Proof: Condition(iii) gives | Pw |L) - kjy_y;a dy[Pw |y, L) xPy|L)] | < eforall
Y+ y+d
w. However |k [y dy[PW]|y, L) xPy|L)] - kPW]y,L)fy—5 dyPyIL)| <
Tk x Iy_\gé dy P(y | L), by condition (ii). Combiningthesetwo results,we seethat
y+o y+0
|PW|L) - kPWw]yL)fys dyPy|L)| <e + 1k x[,5 dyP{y]|L). QED.

Notethatthe proof of theorem2 would go throughevenif P(y | L) werenot peakedabout
Y, or if it werepeakedaboutsomepoint far from they for which (ii) and(iii) hold; no-
wherein the proof is the definition of y from condition (i) used.Howeverin practice,
whencondition(iii) is met,k =1, P(y| L) falls to 0 outsideof theinterval[y - d, Y + 9],
andP(w |y, L) staysreasonablypoundedfor all suchy. (If this weren'tthe case,then
P(w |y, L) would haveto fall to O outsideof [y - , ¥ + 8], somethingvhichis rarelytrue.)
Sowe couldeitherjustgive conditions(ii) and(iii), or we couldgive (i), (ii), andtheextra
condition that Rf |y, L) is small enough so that condition (iii) is met.

Thisk = 1 caseis perhapghe mostintuitive way of seing how (i) through(iii) give evi-
denceworking. With k = 1, condition(iii) meanghatwe canrestrictour attentionto the
region[y — 9, y+ &), i.e.,we canreplaceour full integralwith oneoverthatregion.(Con-
dition (i), by itself, doesnot give usthis. Seebelow) Condtion(ii) thenmeanghatwe can
pull P(w |y, L) outsideof thatintegralover[y — 9, y'+ 9], sinceit tellsusthatP(w |y, L)
is essentiallyconstantacrossthat region. This is essentiallywhat evidenceworking
amounts to.

It is importantto realizethattheorem?2 hold for all 3 andy'. In otherwords,onecanpick
anyd andy, measureheresultang, 1, A, A, andplugthesednto theoren®. (At theexpense
of amuchmorelaboriouspresentatiorthis couldbeindicatedformally by writing (3, V),
(3, V), A(D, ¥), A(D, ¥) everywhere.)With few exceptionsthe sameholdsfor the other
theoremspresentedhereinwhich involve conditions(i) through(iii). (Exampleof anex-
ception: as worded, theorem 3 only holdsXer 1.)

Careshouldbetakenin applyingtheorem?2 if thevalueof ¢ is not known. (Note that ¢
cannot be derivedfrom normalizationoverw-spacepothP(w | L) andP{w |y, L) areal-
readynormalized.)To seethis, rewrite our resultas | Pw |L) - Pw|Yy,L)] < A+
1-¢)Pw |y, L).If (1-¢)PWw]|Y,L) is notsmall, thenthe errorin approximating
P(w | L) with P(w |y, L) canbequitelarge.Notethoughthatif k 001 andP(y | L) is suffi-
ciently peakedsothatp is very small,thensolong asP(w | ¥, L) (thequantityreferredto
in (ii)) is notlarge,theorem? givesuswhatwe want,P(w | L) OP(w |y, L). Notealsothat
for all wy andwy, [P(wy |L)] / [PW2|L)] = [P(wy |V, L) +dg] / [PW Y, L) +dgl,
whereboth |d;| and |dy| are boundedby A / ¢. Accordingly, if Pw, | Y, L) >> A/ ¢,

[Pwy | L] 7 [Pz [ L] O [Py |y, L)] /[Pwz]Y, L).

In any case |t shouldbe notedthat conditions(i) and(ii) by themselvesrenot sufficient
for the evidenceapproximationto be valid. As an example havew be one-dimensional,
andlet P(w, y| L) = 0 bothfor {|y- Y| <8, |w - w*| <v} andfor {|y-Y|>d, |w - w*| >V},
for someconstants, v, andw*. Let P(w, y| L) beconstaneverywhereslse(within certain
boundsof allowedy andw). For both d andv small, conditions(i) and(ii) hold: the evi-
denceis peakedabouty, andt = 0. Yet for thetrue MAP w, w*, theevidenceapproxima-



tion fails badly.Generically this scenariawill alsoresultin abig errorif ratherthanusing
the evidence-approximateabsteriorto guesshe MAP w, oneinsteadusesit to evaluate
theMAP f (whichdiffersfrom fyap , in generaljor theposterior-averageid [df f P(f| L).

Oneshouldnotethatthereis nothing“necessary’about the definitionsgiven abovefor
conditions(i) through(iii) andfor whatit meangor evidenceto work. In particular,one
couldreplacethe “for all w” clauseghroughouthosedefinitionswith “for all w in are-
gion of interestR”, andtheorem2 would still hold. (In additionthe theoremspresented
belowwould hold with only minor modifications.)As anotheralternative ratherthande-
fining “evidenceworks” in termsof the supremumnorm, one might prefer a different
norm, saythe L1 or L2 norm. For sucha modified definition of “evidenceworks”, one
shouldmodify the definitionsof conditions(i) through(iii) accordingly,andagaintheo-
rem 2 holds.For example jf condition(iii) is modifiedto meanthate > thew-integrated

difference [ dw {| P(w | L) - kjy_\gé dy P@w, y|L) |}, andif condition(ii) is modified

similarly, thenconditions(ii) and(iii) jointly imply that“evidenceworks” asfar asthel!
norm is concerned.

In (Gull 1989)only condition(i) is mentionedandwithoutaformal definition). Theanal-
ysisin (MacKay 1992) mentionscondition (ii) aswell, but not condition (iii). Neither
analysisplugsin for € andt, or in any otherway usesthe assumedlistributionsto infer
bounds on the error accompanying their use of the evidence approximation.

Intuitively, onemightthink thatsincey is the“dominantcontributingy”, the evidenceap-
proximationshouldwork, in general The problemis thatonecanjustaseasilyarguethat
the“dominantcontributingy” for whatwe are interestedn (namelyP(w | L) for thosew
with non-negligibleposterior)is givenby argmax P(w, y | L), notargmay, Py | L). After
all, P | L) is they-integral of P{v, y| L), not of Py | L).

This suggestshat for evidenceto work, y mustmaximizeP(w, y | L), for thosew with
non-negligibleposteriorindeed sinceby (i) P(y | L) is sharplypeakedabouty, it is hard
to seehow (ii) couldhold unlessP(w, y | L) werealsosharplypeakedabouty, for those
w for whichit is significantlynon-zeroThis reasoninganbeformalizedasfollows. (Es-
sentiallythesameresultcanalsobeprovenwith differentreasoningjustby invoking con-
dition (iii), so long as k = 1. See the appendix.)

First,write P(w, y| L) asPW, i, Yy | L), with {j #i} indicatingall j valuesnotequalto
i. With this notation,P(w, y;, (Y); j | L) is theposteriorof w andy, evaluatedwith all but
the i'th component of set to theiy values. (So only; will be varied.)

Theorem 3: If conditions(i) and(ii) hold andevidencevorks,thenfor all i andfor all w
suchthatPw | L) >A+1dA /(1= A), PW, v, (V)= | L) musthavea peakin y; some-
where withind; of (V);.

Proof: View & asavectorin thesamespaceasy. View &; aseitherthei'th componenof

0, or asthevectorwill all 0 componentsgxcepffor thei'th componenwhichhasthesame
valueasthevectord. (The contextwill makeit clearwhich meaningis beingassumed.)
Now chooseani. If thedistributionPWw, y;, (Y);# | L), consideredsafunctionof y; with

w fixed, hasa local maximumin the openinterval ((y - d);, (Y + 9);), thenwe’re done.
Thereforewe only needto considerthe hypothesighatP(Ww, vi, (Y)g#; | L) hasnolocal
maximumin that interval. Now if both Pw, y - §; | L) andP(w, y + & | L) were<
P, y | L) (herebothy andd; arebeingviewedasvectors),it would follow thatour dis-
tribution P(w, v;, (Y)g#j | L) hasa local maximumovery, somewherén the interval
((y - 9);, (Y +9);), contraryto hypothesisThereforeoneof thosetwo endpointsmusthave
probability> thatof themiddlepoint. Withoutlossof generalityassumét’s theendpoint
P,y + & |L); P,y |L) <P,y + 9 | L). Now examinetheratioP(w |y + §;, L) /
P@ | v, L), which we canwrite asthe productof ratios[P(y | L) / Pl + & [L)] %
[Pw,y +9;|L) / Plw,y |L)]. By ourassumptionthe secondermin squarebrackets>
1. However by condition (i), the first term in squarebrackets> 1 / A. Therefore



PWw|y +9,L) >PWw |y, L) / A andthedifferenceP(w |y + ;L) - Pw ]|y, L) >

PWw |y, L) x (A1-1).Usingcondition(ii), thismeanshatP@w |y, L) x (A\1-1) < 1,
whichin turn meanghat¢ x P(w |y, L) is boundedaboveby (T x ¢ x A) / (1 — A). If ev-
idenceworks,this meanghatthequantityP(w | L) is boundedaboveby A + tdA / (1 - A).
If thisis not the case thenour hypothesighat thereis no peakin the interval mustbe
wrong. QED.

So for thosew with non-negligibleposterior,for € small, the y-peakof P(w, y | L) O
P(L |w,y) x P(w |y) x P(y) must lie essentially within the peak ofyR(). Therefore:

Theorem 4: Assume that Pw | y;) = expy; U(w)) / Z4(y;) for some function U(.),
P(L [w, yo) =exp(yo V(w, L)) / Z5(y,, w) for some function V(., .), and P(y) = Ply)P(y,).
(The Z; act as normalization constants.) Then if evidence works and conditions (i) and (ii)

hold, for all wwith non-negligible posterior the y-solution to the equations
-U(w) + 9y, [In(Pya) - IN(Zy(yp)] = O

V(w, L) + 0y, [In(P(y2) - In(Z(v2, w))] = 0
must like within the y-peak of P(y | L).

Proof: Plw, y|L) O{P(y1) x P(y2) x exp[y;UW) - Y2 V(W, L)] } 7 {Z1(v1) X Za(v2, W)}-
Forbothi =1 andi = 2, evaluateayI [P(w, vi, (V)= |L)], andsetit equalto zero. This

givesthe two equationsNow define“the y-peakof P(y | L)” to meana hyper-rectangle
with i-componentwidth 28;, centeredon y, wherehaving a “non-negligible posterior”

meansP(w | L) > A+ tdA /(1 - A). Applying theorem3, we gettheresultclaimed.QED.

Theorem4 providesuswith atestof the evidenceapproximationFor examplejn MacK-
ay’s scenarioP(y) is uniform, U(w) = W(w), andV(w, L) = X(w, L), so Z, andZ, are
proportional to (yl)‘N’2 and (yz)‘m’2 respectively.Thereforeif the vector {yy, yo} =

{N /[2W(w)], m/[2x2(w, L)]} doesnotlie within the peakof the evidencefor aw with
non-negligibleposterior,t is nottruethatconditions(i) and(ii) hold andevidenceworks.
(In regardgo finding suchaw, notethatif evidencevorkswith ¢ 001, thenthew theev-
idence approximation considers to be the MARill have a non-negligible R(]| L).)

That v / y» mustapproximatelyequal[N X2(w, L)] / [m W(w)] shouldnot be too sur-
prising.If theevidenceapproximatioris valid, thenin particulartheevidenceprocedure’s
MAP w shouldbecloseto thetrue MAP w (assumingheposteriordn questioraren’tex-
ceedinglyflat overa largerange).And if we setthew-gradientof boththe evidence-ap-
proximatedandexactposteriorto zero,anddemandhatthesamew, w', solvesbothequa-

tions,we gety, /Yy, =[(N +2) X2(wW', L)] / [(m +2)W(W")]. (Unfortunately,if onecon-
tinuesandevaluates?wiawjP(w | L) atw', oftenonefinds thatit hasoppositesignsfor the

two posteriors Sothe w maximizingone posteriorminimizesthe otherone - a graphic
failure of the evidence approximation.)

It is notclearfrom the providedneuralnetdatawhetherthetestof theoren¥ is passedn
(MacKay1992).Howeverit appearshatthe correspondingonditionis not met,for y; at
least,for the scenarioin (Gull 1992)in which the evidenceapproximationis usedwith
U(.) beingthe entropy.(See(Strausset al. 1993, Wolpertet al. 1993).) Sinceconditions
(i) through (iii) are sufficient conditions, not necessaryones,this doesnot prove that
Gull's useof evidences invalid. (It is still anopenproblemto delineatethefull iff for the
evidenceapproximationbeingvalid, thoughit appearghat matchingof peaksasin theo-
rem 3 is necessarySee(Wolpertetal. 1993).)Howeverthis doesmeanthatthejustifica-
tion offeredby Gull for hisuseof evidencds apparentlyinvalid. It mightalsoexplainwhy
Gull's resultswere “visually disappointingand ... clearly ... ‘over-fitted™”, to use his
terms.

Notethatthefirst equationin theorem4 doesnot dependon the exponentiahatureof the
likelihood; it holdssolongasP(L | w, y) = P(L | w, y,). Note alsothatif evidenceworks,

thatequationsetsrestrictionson the setof w which havenon-negligibleposteriorandalso



obeyconditions(i) and(ii). For example,in MacKay’s scenariothat equationsaysthat
N / 2U(w) mustlie within the width of the evidencepeak.If & is small, this meansthat
unlessall w with non-negligibleposteriorhaveessentialljthe sameU(w), conditions(i)
and(ii) cannot hold for all of them.Soif the true posteriorhaspeakswith significantly
differentU(w)), thenconditions(i) and(ii) cannothold. (Notethatdependingnthelike-
lihood, both P§ | L) and P | L,y) can be multi-modal even whenyR() is not.)

Finally, if for somereasonone wishesto know y, theorem4 cansometimede usedto
circumventthe commondifficulty of numericallyevaluatingP(y | L). To dothis, oneas-
sumeshat conditions(i) through(iii) hold. Thenonefinds any w with a non-negligible
posterior(say by use of the evidenceapproximationcoupledwith approximationsto
P(y | L)). Oneusesthatw in theorem4 to find a y which mustlie within the peakof
P(y | L), and therefore must lie close to the correct valug of

4 CONCLUDING REMARKS

Theremight be scenariosn which the exactcalculationof the quantity of interestis in-
tractable sothatsomeapproximationis necessaryThis is oftenthe case for exampleif
the quantity of interestis not the posterior,but ratherthe posterioraverageof f. If one
could provethatthe evidenceapproximationgivesa goodestimateof sucha quantity of
interestdirectly, withoutfirst relatingerrorin thatquantityto errorin the posterior then
onecouldbypasdestingconditions(i) through(iii), andjustifying useof theevidenceap-
proximation might be relatively straight-forward. Alternatively, if one’s choice of
P |y), P(y), andP(L | w, V) is poor,the evidenceapproximatiorwould be usefulif the
errorin thatapproximatiorsomehow'cancels”errorin the choiceof distributions.How-
everif onebelievesone’sdistributions,andif the quantityof interestis (beingrelateddi-
rectlyto) P(w | L), thenataminimumoneshouldcheckconditions(i) through(iii) before
usingtheevidenceapproximationWhenoneis dealingwith neuralnets,oneneedn’teven
do that; the exact calculation is quicker and simpler than the evidence approximation.

It shouldbeemphasizethattheerrorsdiscussedh this paperareonly thoseof implemen-
tation,only thoseof aparticularapproximationThetheoreticacontextof theevidenceap-
proximation - conventionaBayesiananalysis- is onewhosefundamentabxiomsand
concerngare,arguably thecorrectonesfor addressingnanyof theissuesf interestin real
world supervisedearning.In this the work of MacKay and Gull differs from the work
whichis conductedn certainalternativeapproacheso theoreticabupervisedearning,ap-
proachesvhich areignorantof the subtlerelationshipbetweerthe foundationsof a math-
ematicsandits applicabilityto therealworld. Unfortunatelyfor MacKayandGull, whereas
thoseotherapproachesre somewhaentrenchedn the field of neuralnets,the evidence
proceduras arelativenew-comerAs aconsequencd, is morereadilyheldto public scru-
tiny than are those other approaches.

Appendix

Thisappendixprovesthatwhenevidenceworks,condition(ii) give condition(iii). There-
fore when condition(ii) holds, condition(iii) can be usedas a checkto seeif evidence
works.Nextthis appendixshowsthatthe needfor thepeakof P(w, y| L) to havethesame
y asthe peakof P(y | L) canbe derivedfrom condition(iii) by itself, withoutinvoking (i)
and (ii).

Theorem A.1: If conditions(ii) holds, and evidence works, then condition (iii) holds, with
k=¢/(1-p),ande=A+1d.

. _ y+o y+0
Proof: Write o = [y5 dy[PW |y, L) P(y|L)] = Jy—s dy[Pw]y,L)Ply|L)] +
jy_\ga dy [{P(w |y, L) - Pw |V, L)} xP(y|L)]. By condition(ii), thisequalsPWw |y, L)

x(1-p) + Iy_\gé dy [stuff(y) x P(y | L)], where"stuff(y)” is boundedin magnitude)y
1. Thereforeo is boundedaboveby [P(w |V, L) +1] % (1- p). Howeverwe similarly know
that o is boundedbelow by [P(w | ¥, L) — 1] X (1 - p). Combiningour resultsgives
[{P(w]y,L) - [o/(1-p)]} | £ T.Usingthedefinition of “evidenceworks”, we get
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[{PW L) - [o0/(1-p)I}| < 16 +A. QED.

It is possibleto provethatpeaksmustcancelwithout usingconditions(i) and(ii). Forex-
ample, condition (iii) suffices, if k = 1:

Theorem A.3: If condition(iii) holdswith k= 1, thenfor all w suchthatP(w |L) >c>¢,
for all i, P(w, y; | L) must have g-peak somewhere with#[1 + 2 / (c -¢€)] of (Y);.

+0
Proof: Condition(iii) with k = 1 meansthatP(w | L) - jy._\g oy P(w, y| L) <& Now
extendout to infinity the limits of integrationof the integralsover y;4, . This gives

+3);
P |L) - I(y—esgxi/ ) dy; P(w, y; | L) <&. Fromnow onthei subscriptony andd will be

+O+
implicit. We havebothe > jy:g o dy P(w, y|L) ande > jy_afr ® dy P(w, y | L), for
anyscalar > 0. Now assumehatP(w, y| L) doesn’'thaveapeakanywheren theinterval
[Y -3-r1y +d+1]. Definey* =argmax,qpy-s, y+g {P(W, y|L)}. Givenourno-peaks
assumptionjt is not possiblethat both the interval [y - & - r, ¥ - 8] andthe interval
[y + 9,y + 0+ 1] containpointsy for whichP(w, y | L) < P(w, yOI| L). Sowithoutlossof
generality,we canassumehatfor anyy O [y + 9, Y + & + 1], thevalueof P(w, y| L) is
boundedbelow by the maximalvalueit takesonin theinterval[y - d, y + 3]. Usingthis

. Y+O+H y+d -
givesfy+s dyPlw,y|L) = (r/20) x fy—5 dyP(w,y[L). Thisin turn meanghat

+ +
J\,_ﬁ ° dyP(w,y|L) < 26¢/r.ButsinceP(w |L) <e+ j\,_ﬁ ® dy P(w, y|L), thismeans
thatP(w | L) <g(1+28/r). Soif P(w |L) >c(caconstant€),r<23e/(c- €). If rexceeds
this value, our assumptionthat P(w, y | L) doesn’t have a peak anywhere in
Yy -0-r,y + 0 +r] mustbewrong.In otherwords,theremustbe a peakof P(w, y | L)
within (1 + Z/(c - €)) of y. QED.
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